题目内容
已知函数f(x)=
,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )
|
分析:不妨设a<b<c,作出f(x)的图象,根据图象可得a,b,c的范围,根据f(a)=f(b)可得ab=1,进而可求得答案.
解答:
解:不妨设a<b<c,
作出f(x)的图象,如图所示:
由图象可知0<a<1<b<10<c<12,
由f(a)=f(b)得|lga|=|lgb|,即-lga=lgb,
∴lgab=0,则ab=1,
∴abc=c,
∴abc的取值范围是(10,12),
故选B.
作出f(x)的图象,如图所示:
由图象可知0<a<1<b<10<c<12,
由f(a)=f(b)得|lga|=|lgb|,即-lga=lgb,
∴lgab=0,则ab=1,
∴abc=c,
∴abc的取值范围是(10,12),
故选B.
点评:本题考查对数函数的图象和性质,考查数形结合思想、函数与方程思想,考查学生分析解决问题的能力.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|