题目内容
已知等比数列{an}中,各项都是正数,且a1,
a3,2a2成等差数列,则
=______.
| 1 |
| 2 |
| a3+a10 |
| a1+a8 |
∵a1,
a3,2a2成等差数列,
∴a3=a1+2a2,又数列{an}为等比数列,
∴a1q2=a1+2a1q,
∵等比数列{an}中,各项都是正数,
∴a1>0,q>0,
∴q2-2q-1=0,
解得:q=
=1±
,
∴q=1+
,q=1-
(小于0舍去),
则
=
=
=
=q2=(1+
)2=3+2
.
故答案为:3+2
| 1 |
| 2 |
∴a3=a1+2a2,又数列{an}为等比数列,
∴a1q2=a1+2a1q,
∵等比数列{an}中,各项都是正数,
∴a1>0,q>0,
∴q2-2q-1=0,
解得:q=
2±2
| ||
| 2 |
| 2 |
∴q=1+
| 2 |
| 2 |
则
| a3+a10 |
| a1+a8 |
| a1q2+a1q9 |
| a1+a1q7 |
| q2+q9 |
| 1 +q7 |
| q2(1+q7) |
| 1 +q7 |
| 2 |
| 2 |
故答案为:3+2
| 2 |
练习册系列答案
相关题目