题目内容

如图,正四面体ABCD的顶点A、B、C分别在两两垂直的三条射线Ox、Oy、Oz上,给出下列四个命题:
①多面体O-ABC是正三棱锥;
②直线OB平面ACD;
③直线AD与OB所成的角为45°;
④二面角D-OB-A为45°.
其中真命题有______(写出所有真命题的序号).
精英家教网

精英家教网
①如图ABCD为正四面体,
∴△ABC为等边三角形,
又∵OA、OB、OC两两垂直,
∴OA⊥面OBC,∴OA⊥BC,
过O作底面ABC的垂线,垂足为N,
连接AN交BC于M,
精英家教网

由三垂线定理可知BC⊥AM,
∴M为BC中点,
同理可证,连接CN交AB于P,则P为AB中点,
∴N为底面△ABC中心,
∴O-ABC是正三棱锥,故A正确.
②将正四面体ABCD放入正方体中,如图所示,显然OB与平面ACD不平行.
则②不正确,
③直线AD与OB所成的角为45°;
④二面角D-OB-A为45°.
命题③④显然成立.
故答案为:①③④.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网