题目内容
(本题满分16分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,
=2
=2.
(1)求证:
;
(2)求证:
∥平面
;
(3)求三棱锥
的体积
.
![]()
解:(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=
,AC=2.取
中点
,连AF, EF,
∵PA=AC=2,∴PC⊥
. ………………………………………………………2分
∵PA⊥平面ABCD,
平面ABCD,
∴PA⊥
,又∠ACD=90°,即
,
∴
,∴
,
∴
. …………………………………………………………………… 4分
∴
.
∴PC⊥
.…………………………………………………6分
(2)证法一:取AD中点M,连EM,CM.则
![]()
EM∥PA.∵EM
平面PAB,PA
平面PAB,
∴EM∥平面PAB. ……………………………………………………………………8分
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC
平面PAB,AB
平面PAB,
∴MC∥平面PAB. ……………………………………………………………………10分
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC
平面EMC,∴EC∥平面PAB.………………………………………………12分
证法二:延长DC、AB,设它们交于点N,连PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点.…………………………8分
∵E为PD中点,∴EC∥PN …………………………………………………………10分
∵EC
平面PAB,PN
平面PAB,∴EC∥平面PAB. ………………… 12分(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2
,得EF=.……………14分
则V=
. ………………………………… 16分
【解析】略