题目内容
预算用2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子数不少于桌子数且不多于桌子数的1.5倍,问桌、椅各买多少才行?
设购买桌子x张,椅子y张,其总数为z,
根据题意得约束条件为
|
目标函数为z=x+y,作出可行域
作出直线l:x+y=0将l向右上方平称到l′位置,使l′经过直线y=1.5x与50x+20y≤2000
的交点A,此时z应取得最大值.
解
|
|
又由50x+20y≤2000.得y=37.
∴x=25,y=37是符合条件的最优解
答:应买桌子25张,椅子37张.
练习册系列答案
相关题目