题目内容

“m=”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( )
A.充分必要条件
B.充分而不必要条件
C.必要而不充分条件
D.既不充分也不必要条件
【答案】分析:判断充分性只要将“m=”代入各直线方程,看是否满足(m+2)(m-2)+3m•(m+2)=0,判断必要必看(m+2)(m-2)+3m•(m+2)=0的根是否只有
解答:解:当m=时直线(m+2)x+3my+1=0的斜率是直线(m-2)x+(m+2)y-3=0的斜率是
∴满足k1•k2=-1
∴“m=”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分条件,
而当(m+2)(m-2)+3m•(m+2)=0得:m=或m=-2
∴“m=”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”充分而不必要条件.
故选B
点评:本题是通过常用逻辑用语考查两直线垂直的判定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网