题目内容

在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左右焦点.已知△F1PF2为等腰三角形,
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M的轨迹方程.
(Ⅰ)解:设
由题意,可得,即
整理得,得(舍)或
所以
(Ⅱ)解:由(Ⅰ)知
可得椭圆方程为
直线PF2方程为
A,B两点的坐标满足方程组
消去y并整理,得
解得
得方程组的解
不妨设
设点M的坐标为(x,y),则
,得
于是


化简得
代入,得,所以x>0,
因此,点M的轨迹方程是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网