题目内容
已知数列{an}和{bn}满足:a1=1,a2=2,an>0,bn=
(n∈N*),且{bn}是以q为公比的等比数列.
(I)证明:an+2=anq2;
(II)若cn=a2n-1+2a2n,证明数列{cn}是等比数列;
(III)求和:
+
+
+
+…+
+
.
| anan+1 |
(I)证明:an+2=anq2;
(II)若cn=a2n-1+2a2n,证明数列{cn}是等比数列;
(III)求和:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| a2n-1 |
| 1 |
| a2n |
(I)证:由
=q,有
=
=q,∴an+2=anq2(n∈N*).
( II)证:∵an=qn-2q2,∴a2n-1=a2n-3q2=…=a1q2n-2,a2n=a2n-2q2=…=a2qn-2,
∴cn=a2n-1+2a2n=a1q2n-2+2a2q2n-2=(a1+2a2)q2n-2=5q2n-2.
∴{cn}是首项为5,以q2为公比的等比数列.
( III)由( II)得
=
q2-2n,
=
q2-2n,于是
+
+…+
=(
+
+…+
)+(
+
+…+
)=
(1+
+
+…+
)+
(1+
+
+…+
)=
(1+
+
+…+
).
当q=1时,
+
+…+
=
(1+
+
+…+
)=
n.
当q≠1时,
+
+…+
=
(1+
+
+…+
)=
(
)=
[
].
故
+
+…+
=
| bn+1 |
| bn |
| ||
|
| ||
|
( II)证:∵an=qn-2q2,∴a2n-1=a2n-3q2=…=a1q2n-2,a2n=a2n-2q2=…=a2qn-2,
∴cn=a2n-1+2a2n=a1q2n-2+2a2q2n-2=(a1+2a2)q2n-2=5q2n-2.
∴{cn}是首项为5,以q2为公比的等比数列.
( III)由( II)得
| 1 |
| a2n-1 |
| 1 |
| a1 |
| 1 |
| a2n |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2n |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2n-1 |
| 1 |
| a2 |
| 1 |
| a4 |
| 1 |
| a2n |
| 1 |
| a1 |
| 1 |
| q2 |
| 1 |
| q4 |
| 1 |
| q2n-2 |
| 1 |
| a2 |
| 1 |
| q2 |
| 1 |
| q4 |
| 1 |
| q2n-2 |
| 3 |
| 2 |
| 1 |
| q2 |
| 1 |
| q4 |
| 1 |
| q2n-2 |
当q=1时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2n |
| 3 |
| 2 |
| 1 |
| q2 |
| 1 |
| q4 |
| 1 |
| q2n-2 |
| 3 |
| 2 |
当q≠1时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2n |
| 3 |
| 2 |
| 1 |
| q2 |
| 1 |
| q4 |
| 1 |
| q2n-2 |
| 3 |
| 2 |
| 1-q-2n |
| 1-q-2 |
| 3 |
| 2 |
| q2n-1 |
| q2n-2(q2-1) |
故
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2n |
|
练习册系列答案
相关题目