题目内容
6.已知正项数列{an}的前n项和为Sn,对任意n∈N+,有2Sn=an2+an.(1)求数列{an}的通项公式;
(2)令bn=$\frac{1}{{a}_{n}\sqrt{{a}_{n+1}}+{a}_{n+1\sqrt{{a}_{n}}}}$,设{bn}的前n项和为Tn,求证:Tn<1.
分析 (1)利用2an+1=2Sn+1-2Sn整理得an+1-an=1,进而计算可得结论;
(2)通过分母有理化可知bn=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,并项相加即得结论.
解答 (1)解:∵2Sn=an2+an,
∴2Sn+1=an+12+an+1,
∴2an+1=2Sn+1-2Sn
=(an+12+an+1)-(an2+an)
=an+12+an+1-an2-an,
整理得:(an+1+an)(an+1-an)=an+1+an,
∵an>0,
∴an+1-an=1,数列是公差为1的等差数列,
又∵2a1=2S1=${{a}_{1}}^{2}+{a}_{1}$,
∴a1=1,
∴an=n;
(2)证明:∵an=n,
∴bn=$\frac{1}{{a}_{n}\sqrt{{a}_{n+1}}+{a}_{n+1\sqrt{{a}_{n}}}}$
=$\frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}$
=$\frac{n\sqrt{n+1}-(n+1)\sqrt{n}}{[n\sqrt{n+1}+(n+1)\sqrt{n}][n\sqrt{n+1}-(n+1)\sqrt{n}]}$
=-$\frac{n\sqrt{n+1}-(n+1)\sqrt{n}}{n(n+1)}$
=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,
∴Tn=1-$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{2}}$-$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$
=1-$\frac{1}{\sqrt{n+1}}$
<1.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
| A. | 0<a≤1 | B. | a≥1 | C. | 0<a<1 | D. | a>1 |
| A. | 7 | B. | 28 | C. | 34 | D. | 42 |
| A. | 9 | B. | 3 | C. | 2 | D. | 1 |
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |