题目内容
已知在平面直角坐标系xoy中,向量
=(0,1),△OFP的面积为2
,且
•
=t,
=
+
.
(I)设4<t<4
,求向量
与
的夹角θ的取值范围;
(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且|
|=c,t=(
-1)c2,当|
|取最小值时,求椭圆的方程.
| j |
| 3 |
| OF |
| FP |
| OM |
| ||
| 3 |
| OP |
| j |
(I)设4<t<4
| 3 |
| OF |
| FP |
(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且|
| OF |
| 3 |
| OP |
(1)由2
=
|
|•|FP|•sinθ,得|
|•|
|=
,
由cosθ=
=
,得tanθ=
.
∵4<t<4
∴1<tanθ<
∵θ∈[0,π]
∴夹角θ的取值范围是(
,
)
(2)设P(x0,y0),则
(x0-c,y0),
=(c,0).∴
•
=(x0-c,y0)•(c,0)=(x0-c)c=t=(
-1)c2∴x0=
c
S△OFP=
|
|•|y0|=2
∴y0=±
∴|
|=
=
≥
=2
∴当且仅当
c=
,即c=2时,|
|取最小值2
,此时,
=(2
,±2
)
∴
=
(2
,2
)+(0,1)=(2,3)
或
=
(2
,-2
)+(0,1)=(2,-1)
椭圆长轴2a=
+
=8∴a=4,b2=12
或2a=
+
=1+
∴a=
,b2=
故所求椭圆方程为
+
=1.
或
+
=1
| 3 |
| 1 |
| 2 |
| OF |
| OF |
| FP |
4
| ||
| sinθ |
由cosθ=
| ||||
|
|
| tsinθ | ||
4
|
4
| ||
| t |
∵4<t<4
| 3 |
| 3 |
∴夹角θ的取值范围是(
| π |
| 4 |
| π |
| 3 |
(2)设P(x0,y0),则
| FP |
| OF |
| OF |
| FP |
| 3 |
| 3 |
S△OFP=
| 1 |
| 2 |
| OF |
| 3 |
4
| ||
| c |
∴|
| OP |
|
(
|
2
|
| 6 |
∴当且仅当
| 3 |
4
| ||
| c |
| OP |
| 6 |
| OP |
| 3 |
| 3 |
∴
| OM |
| ||
| 3 |
| 3 |
| 3 |
或
| OM |
| ||
| 3 |
| 3 |
| 3 |
椭圆长轴2a=
| (2-2)2+(3-0)2 |
| (2+2)2+(3-0)2 |
或2a=
| (2-2)2+(-1-0)2 |
| (2+2)2+(-1-0)2 |
| 17 |
1+
| ||
| 2 |
1+
| ||
| 2 |
故所求椭圆方程为
| x2 |
| 16 |
| y2 |
| 12 |
或
| x2 | ||||
|
| y2 | ||||
|
练习册系列答案
相关题目