题目内容
已知10个乒乓球中有2个次品.(1)任意取出4个乒乓球作检验,求其中恰有1个次品的概率.
(2)为了保证使2个次品全部检验出的概率不小于0.8,至少应抽取几个乒乓球?
解:(1)设10个乒乓球中取出4个,其中恰有1个次品的事件为A.则P(A)=
=
.因此,恰有一个次品的概率是
.
(2)设10个乒乓球中取出n个,其中有2个次品的事件为B.
则P(B)=
=
·
=
,
依题意,P(B)≥0.8,
即
≥
,
亦即n2-n-72≥0.
又n∈N*,所以n≥9.
因此,至少抽取9个乒乓球才能满足题意.
为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
|
男生 |
|
5 |
|
|
女生 |
10 |
|
|
|
|
|
|
50 |
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率![]()
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,
还喜欢打篮球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生
和
不全被选中的概率.下面的临界值表供参考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:
其中
.)
【解析】第一问利用数据写出列联表
第二问利用公式
计算的得到结论。
第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
,
,![]()
基本事件的总数为8
用
表示“
不全被选中”这一事件,则其对立事件
表示“
全被选中”这一事件,由于
由
2个基本事件由对立事件的概率公式得![]()
解:(1) 列联表补充如下:
|
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
|
男生 |
20 |
5 |
25 |
|
女生 |
10 |
15 |
25 |
|
合计 |
30 |
20 |
50 |
(2)∵![]()
∴有99.5%的把握认为喜爱打篮球与性别有关
(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
,
,![]()
基本事件的总数为8,
用
表示“
不全被选中”这一事件,则其对立事件
表示“
全被选中”这一事件,由于
由
2个基本事件由对立事件的概率公式得
.