题目内容
(理)动点P为椭圆A.一条直线 B.双曲线的右支
C.抛物线 D.椭圆
(理)
解析:设切点分别为A、B、D,则|F1A|=|F1D|,|PA|=|PB|,|F2B|=|F2D|,
又|PF1|+|PF2|=|PF1|+|PA|+|F2D|=|F1D|+|F2D|=|F1F2|+|2F2D|=2a.
∴|F2D|=a-c为定值.
∴D为定点,CD⊥x轴.
∴C点轨迹为一条直线,故选A.
![]()
答案:A
练习册系列答案
相关题目
题目内容
(理)动点P为椭圆A.一条直线 B.双曲线的右支
C.抛物线 D.椭圆
(理)
解析:设切点分别为A、B、D,则|F1A|=|F1D|,|PA|=|PB|,|F2B|=|F2D|,
又|PF1|+|PF2|=|PF1|+|PA|+|F2D|=|F1D|+|F2D|=|F1F2|+|2F2D|=2a.
∴|F2D|=a-c为定值.
∴D为定点,CD⊥x轴.
∴C点轨迹为一条直线,故选A.
![]()
答案:A