题目内容
已知数列{an}的各项均为正数,Sn表示该数列前n项的和,且对任意正整数n,恒有2Sn=an(an+1),设bn=| n |
| i=1 |
| 1 |
| an+i |
(1)求a1;
(2)求数列{an}的通项公式;
(3)求数列{bn}的最小项.
分析:(1)n=1时,2S1=a1(a1+1),由 S1=a1,a1>0,解得a1 的值.
(2)n≥2时,an=Sn-Sn-1,把2Sn=an(an+1),2Sn-1=an-1(an-1+1),作差可得an-an-1=1,对n≥2时恒成立,因此数列{an}是首项为1,公差为1的等差数列,故an=n.
(3)根据bn+1-bn=
-
=
-
=
>0,对任意正整数n恒成立,可得数列{bn}为递增数列,故数列{bn}的最小项为b1=
.
(2)n≥2时,an=Sn-Sn-1,把2Sn=an(an+1),2Sn-1=an-1(an-1+1),作差可得an-an-1=1,对n≥2时恒成立,因此数列{an}是首项为1,公差为1的等差数列,故an=n.
(3)根据bn+1-bn=
| n+1 |
| i=1 |
| 1 |
| n+1+i |
| n |
| i=1 |
| 1 |
| n+i |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| (2n+1)(2n+2) |
| 1 |
| 2 |
解答:解:(1)n=1时,2S1=a1(a1+1),S1=a1,a1>0,解得a1=1.
(2)n≥2时,an=Sn-Sn-1,2Sn=an(an+1),2Sn-1=an-1(an-1+1),
作差得 2an=an(an+1)-an-1(an-1+1),整理得(an+an-1)(an-an-1-1)=0,∵an>0,∴an+an-1≠0,
∴an-an-1=1,对n≥2时恒成立,因此数列{an}是首项为1,公差为1的等差数列,故an=n.
(3)∵bn=
=
,∴bn+1-bn=
-
=
+
-
=
-
=
>0,对任意正整数n恒成立,
∴数列{bn}为递增数列,∴数列{bn}的最小项为b1=
.
(2)n≥2时,an=Sn-Sn-1,2Sn=an(an+1),2Sn-1=an-1(an-1+1),
作差得 2an=an(an+1)-an-1(an-1+1),整理得(an+an-1)(an-an-1-1)=0,∵an>0,∴an+an-1≠0,
∴an-an-1=1,对n≥2时恒成立,因此数列{an}是首项为1,公差为1的等差数列,故an=n.
(3)∵bn=
| n |
| i=1 |
| 1 |
| an+i |
| n |
| i=1 |
| 1 |
| n+i |
| n+1 |
| i=1 |
| 1 |
| n+1+i |
| n |
| i=1 |
| 1 |
| n+i |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| (2n+1)(2n+2) |
∴数列{bn}为递增数列,∴数列{bn}的最小项为b1=
| 1 |
| 2 |
点评:本题考查利用递推关系求数列的通项公式,判断一个数列是递增数列的方法,求出数列{an}的通项公式,是解题的关键.
练习册系列答案
相关题目