题目内容
若(log23)x-(log53)x≥(log23)-y-(log53)-y,则( )
| A.x-y≥0 | B.x+y≥0 | C.x-y≤0 | D.x+y≤0 |
令F(x)=(log23)x-(log53)x
∵log23>1,0<log53<1
∴函数F(x)在R上单调递增
∵(log23)x-(log53)x≥(log23)-y-(log53)-y,
∴F(x)≥F(-y)
∴x≥-y即x+y≥0
故选B.
∵log23>1,0<log53<1
∴函数F(x)在R上单调递增
∵(log23)x-(log53)x≥(log23)-y-(log53)-y,
∴F(x)≥F(-y)
∴x≥-y即x+y≥0
故选B.
练习册系列答案
相关题目