题目内容

已知函数f(x)=ax2-bx+1,
(Ⅰ)是否存在实数a,b使f(x)>0的解集是(3,4),若存在,求实数a,b的值,若不存在请说明理由.
(Ⅱ)若a<0,b=a-2,且不等式f(x)≠0在(-2,-1)上恒成立,求a的取值范围.
(Ⅰ)不等式ax2-bx+1>0的解集是(3,4)
故方程ax2-bx+1=0的两根为3,4,
则是3+4=
b
a
,3×4=
1
a

∴a=
1
12
,b=
7
12

而当a=
1
12
时,a>0,
不等式ax2-bx+1>0的解集是(-∞,3)∪(4,+∞)满足要求
故不存在实数a,b使f(x)>0的解集是(3,4).
(II)∵a<0,b=a-2,
∴f(x)=ax2-(a-2)x+1,
又∵不等式f(x)≠0在(-2,-1)上恒成立,
又∵函数f(x)=ax2-(a-2)x+1是开口方向朝下,以x=
a-2
2a
1
2
为对称轴的抛物线
∴函数f(x)在(-2,-1)上单调递增
∴f(-2)≥0或f(-1)≤0
解得a<0,所以a∈(-∞,0)(15分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网