题目内容

已知关于x的不等式
ax-5
x2-a
<0的解集为M.
(1)当a=4时,求集合M;
(2)若3∈M且5∉M,求实数a的取值范围.
(1)a=4时,不等式化为
4x-5
x2-4
<0,即(4x-5)(x2-4)<0
利用穿根法解得M=(-∞,-2)∪(
5
4
,2).
(2)当a≠25时,由
3∈M
5∉M
3a-5
9-a
<0
5a-5
25-a
≥0

∴a∈[1,
5
3
)∪(9,25);
当a=25时,不等式为
25x-5
x2-25
<0?M=(-∞,-5)∪(
1
5
,5).
满足3∈M且5∉M,∴a=25满足条件.
综上所述,得a的取值范围是[1,
5
3
)∪(9,25].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网