题目内容
已知函数f(x)=cos2x-
sinxcosx+1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=
,θ∈(
,
),求sin2θ的值.
| 3 |
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=
| 5 |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
(本题满分14分)
(Ⅰ)f(x)=cos2x-
sinxcosx+1
=
-
sin2x+1=cos(2x+
)+
. …(4分)
由2kπ+π≤2x+
≤2kπ+2π,
得kπ+
≤x≤kπ+
(k∈Z).
∴函数f(x)的单调递增区间是[kπ+
,kπ+
](k∈Z). …(6分)
(Ⅱ)∵f(θ)=
,∴cos(2x+
)+
=
,cos(2θ+
)=-
. …(8分)
∵θ∈(
,
),∴2θ+
∈(π,
),
sin(2θ+
)=-
=-
. …(11分)
∴sin2θ=sin(2θ+
-
)=
sin(2θ+
)-
cos(2θ+
)=
. …(14分)
(Ⅰ)f(x)=cos2x-
| 3 |
=
| 1+cos2x |
| 2 |
| ||
| 2 |
| π |
| 3 |
| 3 |
| 2 |
由2kπ+π≤2x+
| π |
| 3 |
得kπ+
| π |
| 3 |
| 5π |
| 6 |
∴函数f(x)的单调递增区间是[kπ+
| π |
| 3 |
| 5π |
| 6 |
(Ⅱ)∵f(θ)=
| 5 |
| 6 |
| π |
| 3 |
| 3 |
| 2 |
| 5 |
| 6 |
| π |
| 3 |
| 2 |
| 3 |
∵θ∈(
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| 5π |
| 3 |
sin(2θ+
| π |
| 3 |
1-cos2(2θ+
|
| ||
| 3 |
∴sin2θ=sin(2θ+
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
2
| ||||
| 6 |
练习册系列答案
相关题目