题目内容
已知a>0,函数f(x)=-asin(2x+
)+b,当x∈[0,
]时,-3≤f(x)≤0.
(1)求常数a,b的值;
(2)设g(x)=lgf(x+
),求g(x)的单调递增区间.
| π |
| 6 |
| π |
| 2 |
(1)求常数a,b的值;
(2)设g(x)=lgf(x+
| π |
| 2 |
分析:(1)当x∈[0,
]时,
≤2x+
≤
,则-
≤sin(2x+
)≤1,利用-3≤f(x)≤1,可求得常数a,b的值;
(2)由(1)得,f(x)=-2sin(2x+
)-1,得到g(x)=lg[2sin(2x+
)-1],
由2sin(2x+
)-1>0及y=2sin(2x+
)-1的单调增区间,即可得到g(x)的单调递增区间.
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
(2)由(1)得,f(x)=-2sin(2x+
| π |
| 6 |
| π |
| 6 |
由2sin(2x+
| π |
| 6 |
| π |
| 6 |
解答:解:(1)由于当x∈[0,
]时,
≤2x+
≤
,
则-
≤sin(2x+
)≤1,
则f(x)=-asin(2x+
)+b∈[-a+b,
a+b],
又由-3≤f(x)≤0,则-3=-a+b,0=
a+b,
解得a=2,b=-1,
则常数a,b的值分别为2,-1;
(2)由(1)得,f(x)=-2sin(2x+
)-1,
则g(x)=lgf(x+
)=lg[-2sin(2x+
)-1]
=lg[2sin(2x+
)-1],
由于2sin(2x+
)-1>0,则sin(2x+
)>
,
则2kπ+
<2x+
<2kπ+
,k∈Z,
解得kπ<x≤kπ+
,k∈Z,
又由g(x)单调递增,2kπ-
≤2x+
≤2kπ+
,k∈Z,
即当kπ-
≤x≤kπ+
,k∈Z时,g(x)单调递增,
因此,g(x)的单调增区间为(kπ,kπ+
],k∈Z.
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
则-
| 1 |
| 2 |
| π |
| 6 |
则f(x)=-asin(2x+
| π |
| 6 |
| 1 |
| 2 |
又由-3≤f(x)≤0,则-3=-a+b,0=
| 1 |
| 2 |
解得a=2,b=-1,
则常数a,b的值分别为2,-1;
(2)由(1)得,f(x)=-2sin(2x+
| π |
| 6 |
则g(x)=lgf(x+
| π |
| 2 |
| 7π |
| 6 |
=lg[2sin(2x+
| π |
| 6 |
由于2sin(2x+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
则2kπ+
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
解得kπ<x≤kπ+
| π |
| 3 |
又由g(x)单调递增,2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
即当kπ-
| π |
| 3 |
| π |
| 6 |
因此,g(x)的单调增区间为(kπ,kπ+
| π |
| 6 |
点评:本题考查了正弦函数的单调区间,考查了y=Asin(ωx+φ)的单调性及最值,解答本题的关键是利用角的范围求得f(x)=-asin(2x+
)+b的最大值域最小值.
| π |
| 6 |
练习册系列答案
相关题目
已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是( )
| A、?x∈R,f(x)≤f(x0) | B、?x∈R,f(x)≥f(x0) | C、?x∈R,f(x)≤f(x0) | D、?x∈R,f(x)≥f(x0) |