题目内容

在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O,椭圆=1与圆C的一个交点到椭圆两点的距离之和为10。
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长,若存在,请求出点Q的坐标;若不存在,请说明理由。
解:(1)设圆心坐标为(m,n)(m<0,n>0),
则该圆的方程为(x-m)2+(y-n)2=8
已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,
=2
即|m-n|=4①
又圆与直线切于原点,将点(0,0)代入得m2+n2=8②
联立方程①和②组成方程组解得
故圆的方程为(x+2)2+(y-2)2=8;
(2)|a|=5,
∴a2=25,
则椭圆的方程为=1
其焦距c==4,右焦点为(4,0),
那么|OF|=4
通过联立两圆的方程
解得x=,y=
即存在异于原点的点Q(),
使得该点到右焦点F的距离等于|OF|的长。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网