题目内容
19.解方程组$\left\{\begin{array}{l}{\sqrt{x+\frac{1}{y}}+\sqrt{x-y-2}=4}\\{2x-y+\frac{1}{y}=10}\end{array}\right.$.分析 设$\sqrt{x+\frac{1}{y}}$=a≥0,$\sqrt{x-y-2}$=b≥0,则$2x-y+\frac{1}{y}$=10化为$x+\frac{1}{y}$+(x-y-2)=8,即a2+b2=8,可得原方程组变为$\left\{\begin{array}{l}{a+b=4}\\{{a}^{2}+{b}^{2}=8}\end{array}\right.$,解得a=b,进而解出.
解答 解:设$\sqrt{x+\frac{1}{y}}$=a≥0,$\sqrt{x-y-2}$=b≥0,
则$2x-y+\frac{1}{y}$=10化为$x+\frac{1}{y}$+(x-y-2)=8,即a2+b2=8,
∴原方程组变为$\left\{\begin{array}{l}{a+b=4}\\{{a}^{2}+{b}^{2}=8}\end{array}\right.$,解得a=b=2,
∴$\sqrt{x+\frac{1}{y}}$=2,$\sqrt{x-y-2}$=2,
化为$\left\{\begin{array}{l}{x+\frac{1}{y}=4}\\{x-y=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$,
经过检验满足原方程组.
∴原方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$.
点评 本题考查了根式的运算性质、换元法,考查了计算能力,属于中档题.
练习册系列答案
相关题目