题目内容

在直径为4的圆内接矩形中,最大的面积是


  1. A.
    4
  2. B.
    2
  3. C.
    6
  4. D.
    8
D
分析:设内接矩形的长和宽为x和y,根据圆内接矩形的性质可知矩形的对角线为圆的直径,利用勾股定理求得x2+y2的值,进而利用基本不等式求得xy的范围及矩形面积的范围求得答案.
解答:设内接矩形的长和宽为x和y,根据圆内接矩形的性质可知矩形的对角线为圆的直径
故x2+y2=16,
∴x2+y2≥2xy(当且仅当x=y时等号成立)
∴xy≤8
即矩形的面积的最大值值为8
故选D
点评:本题主要考查了圆内接多边形的性质和判定.考查了基础知识的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网