题目内容
已知{an}是各项均为正数的等差数列,lga1,lga2,lga4成等差数列.又bn=
,n=1,2,3,….
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果数列{bn}前3项的和等于
,求数列{an}的首项a1和公差d.
| 1 |
| a2n |
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果数列{bn}前3项的和等于
| 7 |
| 24 |
(1)证明:设{an}中首项为a1,公差为d.
∵lga1,lga2,lga4成等差数列
∴2lga2=lga1+lga4
∴a22=a1?a4,即(a1+d)2=a1(a1+3d)
∴d=0或d=a1
当d=0时,an=a1,bn=
=
,
∴
=1,
∴{bn}为等比数列;
当d=a1时,an=na1,bn=
=
,
∴
=
,
∴{bn}为等比数列
综上可知{bn}为等比数列
(2)当d=0时,bn=
=
,
∴b1+b2+b3=
=
∴a1=
;
当d=a1时,bn=
=
∴b1+b2+b3=
+
+
=
=
∴a1=3
综上可知
或
∵lga1,lga2,lga4成等差数列
∴2lga2=lga1+lga4
∴a22=a1?a4,即(a1+d)2=a1(a1+3d)
∴d=0或d=a1
当d=0时,an=a1,bn=
| 1 |
| a2n |
| 1 |
| a1 |
∴
| bn+1 |
| bn |
∴{bn}为等比数列;
当d=a1时,an=na1,bn=
| 1 |
| a2n |
| 1 |
| 2na1 |
∴
| bn+1 |
| bn |
| 1 |
| 2 |
∴{bn}为等比数列
综上可知{bn}为等比数列
(2)当d=0时,bn=
| 1 |
| a2n |
| 1 |
| a1 |
∴b1+b2+b3=
| 3 |
| a1 |
| 7 |
| 24 |
∴a1=
| 72 |
| 7 |
当d=a1时,bn=
| 1 |
| a2n |
| 1 |
| 2na1 |
∴b1+b2+b3=
| 1 |
| 2a1 |
| 1 |
| 4a1 |
| 1 |
| 8a1 |
| 7 |
| 8a1 |
| 7 |
| 24 |
∴a1=3
综上可知
|
|
练习册系列答案
相关题目