题目内容

已知{an}是各项均为正数的等差数列,lga1,lga2,lga4成等差数列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果数列{bn}前3项的和等于
7
24
,求数列{an}的首项a1和公差d.
(1)证明:设{an}中首项为a1,公差为d.
∵lga1,lga2,lga4成等差数列
∴2lga2=lga1+lga4
∴a22=a1?a4,即(a1+d)2=a1(a1+3d)
∴d=0或d=a1
当d=0时,an=a1,bn=
1
a2n
=
1
a1

bn+1
bn
=1

∴{bn}为等比数列;
当d=a1时,an=na1,bn=
1
a2n
=
1
2na1

bn+1
bn
=
1
2

∴{bn}为等比数列
综上可知{bn}为等比数列
(2)当d=0时,bn=
1
a2n
=
1
a1

∴b1+b2+b3=
3
a1
=
7
24

∴a1=
72
7

当d=a1时,bn=
1
a2n
=
1
2na1

∴b1+b2+b3=
1
2a1
+
1
4a1
+
1
8a1
=
7
8a1
=
7
24

∴a1=3
综上可知
a1=
72
7
d=0
a1=3
d=3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网