题目内容
观察下列等式:
;
……
照此规律,_________.
已知无穷等比数列的公比为,前n项和为,且.下列条件中,使得恒成立的是( )
(A) (B)
(C) (D)
已知.
(Ⅰ)讨论的单调性;
(Ⅱ)当时,证明对于任意的成立.
某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为 .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是
(A)56 (B)60 (C)120 (D)140
设 .
(Ⅰ)求得单调递增区间;
(Ⅱ)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.
已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是
(A)内切 (B)相交 (C)外切 (D)相离
设函数f(x)=ax2-a-lnx,其中a ∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)确定a的所有可能取值,使得f(x) >-e1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。
用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为
(A)24 (B)48 (C)60 (D)72
命题“,使得”的定义形式是
A.,使得
B.,使得
C.,使得
D.,使得