题目内容
已知数列{an}是首项a1=1的等差数列,其前n项和为Sn,数列{bn}是首项b1=2的等比数列,且把S2=16,b1b3=b4.
(1)求数列{an}和数列{bn}的通项公式.
(2)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk,其中k=1,2,3,…,求数列{cn}的前2n+1项和T2n+1.
(1)求数列{an}和数列{bn}的通项公式.
(2)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk,其中k=1,2,3,…,求数列{cn}的前2n+1项和T2n+1.
分析:(1)an=1+(n-1)d,bn=2qn-1,由b1b3=b4,得q=
=b1=2,由此能求出数列{an}和数列{bn}的通项公式.
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2•b2)+…+a2n-1+(a2n+nbn)=1+S2n+(b1+2b2+…+nbn),令A=b1+2b2+…+nbn,利用错位相减法能求出数列{cn}的前2n+1项和T2n+1.
| b4 |
| b3 |
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2•b2)+…+a2n-1+(a2n+nbn)=1+S2n+(b1+2b2+…+nbn),令A=b1+2b2+…+nbn,利用错位相减法能求出数列{cn}的前2n+1项和T2n+1.
解答:解:(1)设数列{an}的公差为d,数列{bn}的公比为q,
则an=1+(n-1)d,bn=2qn-1,
由b1b3=b4,得q=
=b1=2,
∴an=2n-1,bn=2n.
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2•b2)+…+a2n-1+(a2n+nbn)
=1+S2n+(b1+2b2+…+nbn),
令A=b1+2b2+…+nbn,
则A=2+2•22+…+n•2n,
2A=22+2•23+…+(n-1)•2n+n•2n+1,
∴-A=2+22+…+2n-n•2n+1,
∴A=-
+n•2n+1-2n+1+2,
∵S2n=
=4n2,
∴T2n+1=1+4n2+n•2n+1-2n+1+2
=3+4n2+(n-1)•2n+1.
则an=1+(n-1)d,bn=2qn-1,
由b1b3=b4,得q=
| b4 |
| b3 |
∴an=2n-1,bn=2n.
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2•b2)+…+a2n-1+(a2n+nbn)
=1+S2n+(b1+2b2+…+nbn),
令A=b1+2b2+…+nbn,
则A=2+2•22+…+n•2n,
2A=22+2•23+…+(n-1)•2n+n•2n+1,
∴-A=2+22+…+2n-n•2n+1,
∴A=-
| 2(1-2n) |
| 1-2 |
∵S2n=
| 2n(1+a2n) |
| 2 |
∴T2n+1=1+4n2+n•2n+1-2n+1+2
=3+4n2+(n-1)•2n+1.
点评:本题考查数列通项公式的求法,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关题目