题目内容
已知函数f(x)=
,数列{xn}的通项由xn=f(xn-1)(n≥2,n∈N+)确定.
(Ⅰ)求证:{
}是等差数列;
(Ⅱ)当x1=
时,求x100.
| 3x |
| x+3 |
(Ⅰ)求证:{
| 1 |
| xn |
(Ⅱ)当x1=
| 1 |
| 2 |
分析:(Ⅰ)根据xn=f(xn-1)=
,两边取倒数,即可证得 {
}是等差数列;
(Ⅱ)由(Ⅰ)得
=2+(n-1)×
=
,由此可求x100.
| 3xn-1 |
| xn-1+3 |
| 1 |
| xn |
(Ⅱ)由(Ⅰ)得
| 1 |
| xn |
| 1 |
| 3 |
| n+5 |
| 3 |
解答:(Ⅰ)证明:∵xn=f(xn-1)=
∴
=
+
∴
-
=
∴{
}是等差数列;
(Ⅱ)解:由(Ⅰ)得
=2+(n-1)×
=
∴x100=
=
| 3xn-1 |
| xn-1+3 |
∴
| 1 |
| xn |
| 1 |
| 3 |
| 1 |
| xn-1 |
∴
| 1 |
| xn |
| 1 |
| xn-1 |
| 1 |
| 3 |
∴{
| 1 |
| xn |
(Ⅱ)解:由(Ⅰ)得
| 1 |
| xn |
| 1 |
| 3 |
| n+5 |
| 3 |
∴x100=
| 3 |
| 105 |
| 1 |
| 35 |
点评:本题考查等差数列的证明,考查通项的运用,两边取倒数是关键.
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |