题目内容
已知函数f(x)=cos2
-sin2
+sinx.
(I)求函数f(x)的最小正周期;
(II)当x0∈(0,
)且f(x0)=
时,求f(x0+
)的值.
| x |
| 2 |
| x |
| 2 |
(I)求函数f(x)的最小正周期;
(II)当x0∈(0,
| π |
| 4 |
4
| ||
| 5 |
| π |
| 6 |
由题设有f(x)=cosx+sinx=
sin(x+
).
(I)函数f(x)的最小正周期是T=2π.
(II)由f(x0)=
得
sin(x0+
)=
,即sin(x0+
)=
,
因为x0∈(0,
),所以x0+
∈(
,
).
从而cos(x0+
)=
=
=
.
于是f(x0+
)=
sin(x0+
+
)=
sin[(x0+
)+
]=
[sin(x0+
)cos
+cos(x0+
)sin
]=
(
×
+
×
)=
.
| 2 |
| π |
| 4 |
(I)函数f(x)的最小正周期是T=2π.
(II)由f(x0)=
4
| ||
| 5 |
| 2 |
| π |
| 4 |
4
| ||
| 5 |
| π |
| 4 |
| 4 |
| 5 |
因为x0∈(0,
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
从而cos(x0+
| π |
| 4 |
1-sin2(x0+
|
1-(
|
| 3 |
| 5 |
于是f(x0+
| π |
| 6 |
| 2 |
| π |
| 4 |
| π |
| 6 |
| 2 |
| π |
| 4 |
| π |
| 6 |
| 2 |
| π |
| 4 |
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| 2 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| 1 |
| 2 |
4
| ||||
| 10 |
练习册系列答案
相关题目