题目内容

设[x]表示不超过x的最大整数,如[2]=2,[
5
4
]=1,对于给定的n∈N*,定义Cnx=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),则C
3
28
=______;当x∈[2,3)时,函数Cx8的值域是______.
当x=
3
2
时,[
3
2
]=1,
C
3
2
8
=
8
3
2
=
16
3

当x∈[2,3)时,[x]=2,Cxn=
n(n-1)
x(x-1)

Cx8=
8×7
x(x-1)
=
56
x(x-1)

又∵当x∈[2,3)时,f(x)=x(x-1)∈[2,6),
56
x(x-1)
∈(
28
3
,28),∴Cx8∈(
28
3
,28].
故答案为:
16
3
,(
28
3
,28].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网