题目内容

如图:已知四棱柱ABCD—A1B1C1D1的底面是正方形,O1、O分别是上、下底面的中心,A1O⊥平面ABCD.   (1)求证:平面O1DC⊥平面ABCD; (2)若点E在棱AA1上,且AE=2EA1

问在棱BC上是否存在点F,使得EF⊥BC?若存在,求出其位置;若不存在,说明理由.

证明:(1)连结AC、BD、A1C1则AC、BD的交点,O1

 
A1C1中点

∴四边形ACC1A1为平行四边形,

∴四边形A1O1CO为平行四边形…………2分

∴A1O//CO1

∵A1O⊥平面ABCD

∴O1C⊥平面ABCD…………………………4分

∵O1C平面O1DC

∴存在点平面O1DC⊥平面ABCD……………5分

(2)F为BC的三等分点B(靠近B)时,有EF⊥BC……………………6分

过点E作EH⊥AC于H,连FH、EF//A1O

∵平面A1AO⊥平面ABCD

∴EH⊥平面ABCD

又BC平面ABCD   ∴BC⊥EH ①

∴HF//AB     ∴HF⊥BC, ②

由①②知,BC⊥平面EFH∵EF平面EFH    ∴EF⊥BC…………………………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网