题目内容
(2012•湘潭模拟)定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=
,设Sn为数列{
}的前n项和,则Sn
| F(n,1) |
| F(2,n) |
| an•an+1 |
<
<
1;(填“>”、“=”或“<”)分析:由F(x,y)=yx(x>0,y>0),知an=
=
,故
=
=
=
-
,
由此能求出结果.
| F(n,1) |
| F(2,n) |
| 1 |
| n2 |
| an•an+1 |
|
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
由此能求出结果.
解答:解:∵F(x,y)=yx(x>0,y>0),
∴an=
=
,
∴
=
=
=
-
,
∴Sn=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
<1.
故答案为:<.
∴an=
| F(n,1) |
| F(2,n) |
| 1 |
| n2 |
∴
| an•an+1 |
|
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
故答案为:<.
点评:本题考查数列的递推式的应用,是基础题.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目