题目内容

(2012•湘潭模拟)定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=
F(n,1)
F(2,n)
,设Sn为数列{
anan+1
}的前n项和,则Sn
 1;(填“>”、“=”或“<”)
分析:由F(x,y)=yx(x>0,y>0),知an=
F(n,1)
F(2,n)
=
1
n2
,故
anan+1
=
1
n2
1
(n+1)2
=
1
n(n+1)
=
1
n
-
1
n+1

由此能求出结果.
解答:解:∵F(x,y)=yx(x>0,y>0),
an=
F(n,1)
F(2,n)
=
1
n2

anan+1
=
1
n2
1
(n+1)2
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1

=1-
1
n+1
<1.
故答案为:<.
点评:本题考查数列的递推式的应用,是基础题.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网