题目内容
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列.
(I)证明12S3,S6,S12-S6成等比数列;
(II)求和Tn=a1+2a4+3a7+…+na3n-2.
(I)证明12S3,S6,S12-S6成等比数列;
(II)求和Tn=a1+2a4+3a7+…+na3n-2.
(Ⅰ)证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4,
即4aq6=a+3aq3.
变形得(4q3+1)(q3-1)=0,
又∵公比q不等于1,所以4q3+1=0
由
=
=
=
.
=
-1=
-1=1+q6-1=q6=
.
得
=
.
所以12S3,S6,S12-S6成等比数列.
(Ⅱ)Tn=a1+2a4+3a7+…+na3n-2=a+2aq3+3aq6+…+naq3(n-1).
即Tn=a+2•(-
)a+3•(-
)2a+…+n•(-
)n-1a.①
①×(-
)得:-
Tn=-
a+2•(-
)2a+3•(-
)3a+…+(n-1)•(-
)n-1a+n(-
)na…②.
①-②得
Tn=
-n•(-
)na=
a-(
+n)•(-
)na.
所以Tn=
a-(
+
n)•(-
)na.
即4aq6=a+3aq3.
变形得(4q3+1)(q3-1)=0,
又∵公比q不等于1,所以4q3+1=0
由
| S6 |
| 12S3 |
| ||
|
| 1+q3 |
| 12 |
| 1 |
| 16 |
| S12-S6 |
| S6 |
| S12 |
| S6 |
| ||
|
| 1 |
| 16 |
得
| S6 |
| 12S3 |
| S12-S6 |
| S6 |
所以12S3,S6,S12-S6成等比数列.
(Ⅱ)Tn=a1+2a4+3a7+…+na3n-2=a+2aq3+3aq6+…+naq3(n-1).
即Tn=a+2•(-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
①×(-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
①-②得
| 5 |
| 4 |
a[1-(-
| ||
1-(-
|
| 1 |
| 4 |
| 4 |
| 5 |
| 4 |
| 5 |
| 1 |
| 4 |
所以Tn=
| 16 |
| 25 |
| 16 |
| 25 |
| 4 |
| 5 |
| 1 |
| 4 |
练习册系列答案
相关题目