题目内容

已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列.
(I)证明12S3,S6,S12-S6成等比数列;
(II)求和Tn=a1+2a4+3a7+…+na3n-2
(Ⅰ)证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4
即4aq6=a+3aq3
变形得(4q3+1)(q3-1)=0,
又∵公比q不等于1,所以4q3+1=0
S6
12S3
=
a1(1-q6)
1-q
12a1(1-q3)
1-q
=
1+q3
12
=
1
16
S12-S6
S6
=
S12
S6
-1=
a1(1-q12)
1-q
a1(1-q6)
1-q
-1=1+q6-1=q6=
1
16

S6
12S3
=
S12-S6
S6

所以12S3,S6,S12-S6成等比数列.
(Ⅱ)Tn=a1+2a4+3a7+…+na3n-2=a+2aq3+3aq6+…+naq3(n-1)
Tn=a+2•(-
1
4
)a+3•(-
1
4
)
2
a+…+n•(-
1
4
)
n-1
a
.①
①×(-
1
4
)
得:-
1
4
Tn=-
1
4
a+2•(-
1
4
)
2
a+3•(-
1
4
)
3
a+…+(n-1)•(-
1
4
)
n-1
a+n(-
1
4
)
n
a
…②.
①-②得
5
4
Tn
=
a[1-(-
1
4
)
n
]
1-(-
1
4
)
-n•(-
1
4
)na=
4
5
a-(
4
5
+n)•(-
1
4
)na

所以Tn=
16
25
a-(
16
25
+
4
5
n)•(-
1
4
)na
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网