题目内容

设数列{an}满足an>0,(n∈N+),其前n项和为Sn,且
a
3
1
+
a
3
2
+
a
3
3
+…+
a
3
n
=
S
2
n

(1)求an+1与Sn之间的关系,并求数列{an}的通项公式;
(2)令Tn=
1
a1
a
 
2
+
1
a2
a
 
3
+…+
1
an
a
 
n+1
,求证:
n
i=1
[(1-
Ti
Ti+1
)
1
Ti+1
]<2(
2
-1).
分析:(1)利用
a
3
1
+
a
3
2
+
a
3
3
+…+
a
3
n
=
S
2
n
,可得
a
3
1
+
a
3
2
+
a
3
3
+…+
a
3
n+1
=
S
2
n+1
,两式相减,即可求得an+12-an+1=2Sn,再写一式,两式相减,即可证得数列{an}是首项为1,公差为1的等差数列,从而可求数列{an}的通项公式;
(2)根据
1
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1
,可得Tn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1)
=
n
n+1
,从而可证(1-
Ti
Ti+1
)
1
Ti+1
=(
1
Ti
-
1
Ti+1
)
Ti
Ti+1
2(
1
Ti
-
1
Ti+1
)
,即可得出结论.
解答:解:(1)由已知得,当n=1时,a13=S12=a12
又∵an>0,∴a1=1
a
3
1
+
a
3
2
+
a
3
3
+…+
a
3
n
=
S
2
n
①,
a
3
1
+
a
3
2
+
a
3
3
+…+
a
3
n+1
=
S
2
n+1

②-①an+13=
S
2
n+1
-Sn2

∵an+1>0,∴Sn+1+Sn=an+12
an+1+2Sn=an+12
an+12-an+1=2Sn
当n≥2时,an2-an=2Sn-1
①-②(an-an-1-1)(an+an-1)=0
∵an+an-1>0,∴an-an-1=1(n≥2)
故数列{an}是首项为1,公差为1的等差数列.
∴an=n(n∈N*
(2)∵
1
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1

Tn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1)
=
n
n+1

Ti
Ti+1
=
i(i+2)
(i+1)2
<1
,∴(1-
Ti
Ti+1
)
1
Ti+1
=(
1
Ti
-
1
Ti+1
)
Ti
Ti+1
2(
1
Ti
-
1
Ti+1
)

n
i=1
[(1-
Ti
Ti+1
)
1
Ti+1
]<2(
1
T1
-
1
Tn+1
)=2(
2
-
n+2
n+1
)<2(
2
-1)
点评:本题考查的是数列与不等式的综合题,考查裂项法求和,考查放缩法的运用.在解答的过程当中充分体现了数列通项与前n项和的知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网