题目内容
设数列{an}满足an>0,(n∈N+),其前n项和为Sn,且
+
+
+…+
=
(1)求an+1与Sn之间的关系,并求数列{an}的通项公式;
(2)令Tn=
+
+…+
,求证:
[(1-
)
]<2(
-1)..
| a | 3 1 |
| a | 3 2 |
| a | 3 3 |
| a | 3 n |
| S | 2 n |
(1)求an+1与Sn之间的关系,并求数列{an}的通项公式;
(2)令Tn=
| 1 | ||
a1
|
| 1 | ||
a2
|
| 1 | ||
an
|
| n |
| i=1 |
| Ti |
| Ti+1 |
| 1 | ||
|
| 2 |
分析:(1)利用
+
+
+…+
=
,可得
+
+
+…+
=
,两式相减,即可求得an+12-an+1=2Sn,再写一式,两式相减,即可证得数列{an}是首项为1,公差为1的等差数列,从而可求数列{an}的通项公式;
(2)根据
=
=
-
,可得Tn=(1-
)+(
-
)+…+(
-
=
,从而可证(1-
)
=(
-
)
<2(
-
),即可得出结论.
| a | 3 1 |
| a | 3 2 |
| a | 3 3 |
| a | 3 n |
| S | 2 n |
| a | 3 1 |
| a | 3 2 |
| a | 3 3 |
| a | 3 n+1 |
| S | 2 n+1 |
(2)根据
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1) |
| n |
| n+1 |
| Ti |
| Ti+1 |
| 1 | ||
|
| 1 |
| Ti |
| 1 |
| Ti+1 |
| Ti | ||
|
| 1 | ||
|
| 1 | ||
|
解答:解:(1)由已知得,当n=1时,a13=S12=a12,
又∵an>0,∴a1=1
∵
+
+
+…+
=
①,
+
+
+…+
=
②
②-①an+13=
-Sn2
∵an+1>0,∴Sn+1+Sn=an+12
∴an+1+2Sn=an+12
∴an+12-an+1=2Sn①
当n≥2时,an2-an=2Sn-1②
①-②(an-an-1-1)(an+an-1)=0
∵an+an-1>0,∴an-an-1=1(n≥2)
故数列{an}是首项为1,公差为1的等差数列.
∴an=n(n∈N*)
(2)∵
=
=
-
∴Tn=(1-
)+(
-
)+…+(
-
=
∵
=
<1,∴(1-
)
=(
-
)
<2(
-
)
∴
[(1-
)
]<2(
-
)=2(
-
)<2(
-1)
又∵an>0,∴a1=1
∵
| a | 3 1 |
| a | 3 2 |
| a | 3 3 |
| a | 3 n |
| S | 2 n |
| a | 3 1 |
| a | 3 2 |
| a | 3 3 |
| a | 3 n+1 |
| S | 2 n+1 |
②-①an+13=
| S | 2 n+1 |
∵an+1>0,∴Sn+1+Sn=an+12
∴an+1+2Sn=an+12
∴an+12-an+1=2Sn①
当n≥2时,an2-an=2Sn-1②
①-②(an-an-1-1)(an+an-1)=0
∵an+an-1>0,∴an-an-1=1(n≥2)
故数列{an}是首项为1,公差为1的等差数列.
∴an=n(n∈N*)
(2)∵
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1) |
| n |
| n+1 |
∵
| Ti |
| Ti+1 |
| i(i+2) |
| (i+1)2 |
| Ti |
| Ti+1 |
| 1 | ||
|
| 1 |
| Ti |
| 1 |
| Ti+1 |
| Ti | ||
|
| 1 | ||
|
| 1 | ||
|
∴
| n |
| i=1 |
| Ti |
| Ti+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 2 |
|
| 2 |
点评:本题考查的是数列与不等式的综合题,考查裂项法求和,考查放缩法的运用.在解答的过程当中充分体现了数列通项与前n项和的知识.
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|