题目内容

已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;
(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.
分析:(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;
(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.
解答:解:(1)由方程x2+y2+2x-4y+3=0知(x+1)2+(y-2)2=2,所以圆心为(-1,2),半径为
2

当切线过原点时,设切线方程为y=kx,则
|k+2|
k2+1
=
2
,所以k=2±
6
,即切线方程为y=(2±
6
)x.
当切线不过原点时,设切线方程为x+y=a,则
|-1+2-a|
2
=
2
,所以a=-1或a=3,即切线方程为x+y+1=0或x+y-3=0.
综上知,切线方程为y=(2±
6
)x或x+y+1=0或x+y-3=0;
(2)因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.
要使|PM|最小,只要|PO|最小即可.
当直线PO垂直于直线2x-4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,
此时P点即为两直线的交点,得P点坐标(-
3
10
3
5
).
点评:本题考查直线与圆的位置关系,考查学生分析解决问题的能力,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网