题目内容
已知数列{an}满足a1=1,an-an+1=anan+1数列{an}的前n项和为Sn.
(1)求证:数列{
}为等差数列;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn.
(1)求证:数列{
| 1 | an |
(2)设Tn=S2n-Sn,求证:Tn+1>Tn.
分析:(1)由an-an+1=anan+1,从而得
-
=1,根据等差数列的性质,可以证明;
(2)由(1)可求出an的通项公式,求出数列{an}的前n项和为Sn,利用作差法进行证明;
| 1 |
| an+1 |
| 1 |
| an |
(2)由(1)可求出an的通项公式,求出数列{an}的前n项和为Sn,利用作差法进行证明;
解答:(1)证明:由an-an+1=anan+1,
从而得
-
=1(3分)
a1=1,∴数列{
}是首项为1,公差为1的等差数列.(5分)
(2)
=n则an=
,∴Sn=1+
+
+…+
∴Tn=S2n-Sn=1+
+
+…+
+
+…+
-(1+
+
+…+
)
=
+
+…+
(9分)
证:∵Tn+1-Tn=
+
+…+
-(
+
+…+
)
=
+
-
=
-
=
>0,
∴Tn+1>Tn;…12分
从而得
| 1 |
| an+1 |
| 1 |
| an |
a1=1,∴数列{
| 1 |
| an |
(2)
| 1 |
| an |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
∴Tn=S2n-Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
证:∵Tn+1-Tn=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
=
| 1 |
| (2n+1)(2n+2) |
∴Tn+1>Tn;…12分
点评:此题主要考查了等差数列的性质及其应用,第二问利用作差法进行证明,这也是最基本的证明方法,我们要熟练掌握,此题是一道中档题;
练习册系列答案
相关题目