题目内容
已知a>0且a≠1,设P:函数y=loga(x+1)在x∈(0,+∞)内单调递减;Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点,如果P和Q有且只有一个正确,求a的取值范围.
解:当0<a<1时,函数y=loga(x+1)在(0,+∞)内单调递减;当a>1时,y=loga(x+1)在(0,+∞)内不是单调递减.曲线y=x2+(2a-3)x+1与x轴交于不同两点等价于(2a-3)2-4>0,即a<
或a>
.
(1)若P正确,且Q不正确,即函数y=loga(x+1)在(0,+∞)内单调递减,曲线y=x2+(2a-3)x+1与x轴不交于两点,
此时a∈[
,1).
(2)若P不正确,且Q正确,即函数y=loga(x+1)在(0,+∞)内不是单调递减,曲线y=x2+(2a-3)x+1与x轴交于不同两点,
此时a∈(
,+∞).
综上所述,a的取值范围是[
,1)∪(
,+∞).
练习册系列答案
相关题目