题目内容
设{an}是由正数组成的等比数列,Sn是其前n项和,求证:证法一:依题意,{an}的首项a1>0,公比q>0,故0<Sn<Sn+1<Sn+2.
∵qSnSn+2=qSn(a1+qSn+1)<a1qSn+1+q2SnSn+1=qSn+1(a1+qSn)=qSn+12,
∴SnSn+2<Sn+12.∴
<lgSn+1.
证法二:依题意,首项a1>0,Sn+1>Sn,
故SnSn+2-Sn+12=Sn(a1+qSn+1)-Sn+1(a1+qSn)=a1(Sn-Sn+1)<0.
∴SnSn+2<Sn+12.
∴
<lgSn+1.
点评:利用对数函数的性质,将该问题等价转化为证明SnSn+2<Sn+12.
练习册系列答案
相关题目
设{an}是由正数组成的等差数列,{bn}是由正数组成的等比数列,且a1=b1,a2003=b2003,则必有( )
| A、a1002>b1002 | B、a1002=b1002 | C、a1002≥b1002 | D、a1002≤b1002 |