题目内容
已知数列{an}满足:a1=1,an+1=
(1)求a2、a3、a4、a5;
(2)设bn=a2n-2,n∈N,求证{bn}是等比数列,并求其通项公式;
(3)在(2)条件下,求证数列{an}前100项中的所有偶数项的和S100<100.
|
(1)求a2、a3、a4、a5;
(2)设bn=a2n-2,n∈N,求证{bn}是等比数列,并求其通项公式;
(3)在(2)条件下,求证数列{an}前100项中的所有偶数项的和S100<100.
(1)a2=
,a3=-
,a4=
,a5=-
;
(2)∵
=
=
=
=
=
,
又∵b1=a2-2=-
,
∴数列{bn}是等比数列,
且bn=(-
)(-
)n-1=(-
)n;
(3)由(2)得:
a2n=bn+2=2-(
)n (n=1,2,…,50)
∴S100=a2+a4+…+a100=2×50-
=99+
<100.
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 4 |
| 25 |
| 4 |
(2)∵
| bn+1 |
| bn |
| a2n+2-2 |
| a2n-2 |
| ||
| a2n-2 |
=
| ||
| a2n-2 |
| ||
| a2n-2 |
| 1 |
| 2 |
又∵b1=a2-2=-
| 1 |
| 2 |
∴数列{bn}是等比数列,
且bn=(-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)由(2)得:
a2n=bn+2=2-(
| 1 |
| 2 |
∴S100=a2+a4+…+a100=2×50-
| ||||
1-
|
| 1 |
| 299 |
练习册系列答案
相关题目