题目内容

(2010•合肥模拟)已知数列{an}的前n项和为Sn,且Sn=
2-qan
1-q
(n∈N*)其中q为非零常数,函数f(x)=
1
2
x2+2x-
1
2
,数列{bn}满足bn+1=f′(bn),(n∈N*),b1=f(1),设cn=
1
12
anbn
,{bn}的前n项和为TnBn=
1
T1
+
1
T2
+…+
1
Tn
,求An=c1+c2+…+cn
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)当q=
1
3
时,试比较f(
4
3
An)
与f(Bn)的大小,并说明理由.
分析:(I)利用n≥2时,数列的通项an与前n项和Sn的关系可得an=qan-1,再根据等差,等比数列的定义判断即可.
(II)先求出{an}与{bn}的通项公式,从而得到{cn}的通项以及Tn,然后利用裂项求和法求出Bn,利用错位相消法求出An,再将
4
3
An
与Bn作差比较即可.
解答:解:(Ⅰ)Sn=
2-qan
1-q
⇒(1-q)Sn=2-qan
且q≠1
当n=1时,(1-q)S1=2-qa1⇒a1=2
当n≥2时,(1-q)Sn-(1-q)Sn-1=qan-1-qan⇒an=qan-1
∴{an}是以2为首项,公比为q的等比数列.
(Ⅱ) 当q=
1
3
时,由(1)得 an=2(
1
3
)
n-1

又 f(x)=
1
2
x2+2x-
1
2
,∴f′(x)=x+2
由bn+1=f′(bn)得bn+1=f′(bn)=bn+2
∴{bn}是以2为首项,公差为2的等差数列,
故bn=2n
∴cn=
1
12
anbn=n(
1
3
)n
     Tn=
n(b1+bn)
2
=n(n+1),
Bn=
1
T1
+
1
T2
+…+
1
Tn
=
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
n+1

An=c1+c2+…+cn=1•
1
3
+2(
1
3
)
2
+…+n(
1
3
)
n
…①
1
3
An=1•(
1
3
)2+2(
1
3
)3+3(
1
3
)4+…+(n-1)(
1
3
)n+n(
1
3
)n+1
…②
①-②得∴
2
3
An=1•(
1
3
)1+(
1
3
)2+(
1
3
)3+…+(
1
3
)n-n(
1
3
)n+1

=
1
3
(1-
1
3n
)
1-
1
3
-n(
1
3
)n+1=
1-
1
3n
2
-n(
1
3
)n+1

4
3
An=1-
1
3n
-
2n
3
1
3n

4
3
An-Bn=1-
1
3n
-
2n
3
1
3n
-1+
1
n+1
=
1
n+1
-
2n+3
3n+1
=
3n+1-(2n2+5n+3)
(n+1)•3n+1

当n=1时,
4
3
An-Bn=
3n+1-(2n2+5n+3)
(n+1)•3n+1
=
9-10
18
<0
4
3
AnBn

当n≥2时,
令g(x)=3x+1-(2x2+5x+3)
则g′(x)=3x+1ln3-(4x+5),g(x)=3x+1(ln3)2-4在[2,+∞)上为单调增函数,
∴g(x)=3x+1(ln3)2-4≥33(ln3)2-4>0
∴g′(x)=3x+1ln3-(4x+5)在[2,+∞)上为单调增函数,
g′(x)=3x+1ln3-(4x+5)≥33ln3-9>27-9>0
g(x)=3x+1-(2x2+5x+3)在[2,+∞)上为单调增函数,
∴当n≥2时,g(n)=3n+1-(2n2+5n+3)≥33-(2×4+10+3)>0
即当n≥2时,
4
3
An-Bn=
3n+1-(2n2+5n+3)
(n+1)•3n+1
>0
∴当n≥2时,
4
3
AnBn

又f′(x)=x+2>0对x≥0恒成立,
∴f(x)在[0,+∞)上单调递增,
∴当n=1时f(
4
3
An
)<f(Bn
当n≥2时f(
4
3
An
)>f(Bn).
点评:本题主要考查了数列与不等式的综合,同时考查了裂项求和法和错位相消法的运用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网