题目内容
(2011•杭州一模)已知函数f(x)=2
sinxcosx+2cos2x-1(x∈R),g(x)=|f(x)|.
(I)求函数g(x)的单调递减区间;
(II)若A是锐角△ABC的一个内角,且满足f(A)=
,求sin2A的值.
| 3 |
(I)求函数g(x)的单调递减区间;
(II)若A是锐角△ABC的一个内角,且满足f(A)=
| 2 |
| 3 |
分析:(I)先利用二倍角公式和两角和的正弦公式将函数解析式化简为y=Asin(ωx+φ)型函数,再利用y=|sinx|的图象性质,将内层函数看作整体解不等式即可得g(x)的单调减区间;
(II)由已知得sin(2A+
)=
,可将所求角2A看做角2A+
与角
的差,利用两角差的正弦公式展开计算sin2A的值,但角2A+
的范围的确定是一个难点
(II)由已知得sin(2A+
| π |
| 6 |
| 1 |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:解:(Ⅰ) f(x)=2
sinxcosx+2cos2x-1=
sin2x+cos2x=2sin(2x+
)
则g(x)=|2sin(2x+
)|,∵y=|sinx|的单调递减区间为[kπ+
,kπ+π],(k∈Z).
∴由kπ+
≤2x+
≤kπ+π 得:
+
≤x≤
+
,
则g(x)的单调递减区间为[
+
,
+
](k∈Z).
(Ⅱ)∵f(A)=
,
即:sin(2A+
)=
,
∵A∈(0,
),且sin(2A+
)>0,
∴2A+
∈(0,π)
若2A+
∈(0,
),则sin(2A+
)=
<
=sin
,∴2A+
<
,这不可能,
∴2A+
∈(
,π),所以cos(2A+
)=-
∴sin2A=sin[(2A+
)-
]=sin(2A+
)cos
-cos(2A+
)sin
=
•
+
•
=
即sin2A=
.
| 3 |
| 3 |
| π |
| 6 |
则g(x)=|2sin(2x+
| π |
| 6 |
| π |
| 2 |
∴由kπ+
| π |
| 2 |
| π |
| 6 |
| kπ |
| 2 |
| π |
| 6 |
| kπ |
| 2 |
| 5π |
| 12 |
则g(x)的单调递减区间为[
| kπ |
| 2 |
| π |
| 6 |
| kπ |
| 2 |
| 5π |
| 12 |
(Ⅱ)∵f(A)=
| 2 |
| 3 |
即:sin(2A+
| π |
| 6 |
| 1 |
| 3 |
∵A∈(0,
| π |
| 2 |
| π |
| 6 |
∴2A+
| π |
| 6 |
若2A+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
∴2A+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
2
| ||
| 3 |
∴sin2A=sin[(2A+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 3 |
| ||
| 2 |
2
| ||
| 3 |
| 1 |
| 2 |
| ||||
| 6 |
即sin2A=
| ||||
| 6 |
点评:本题主要考查了利用三角变换公式化简三角函数式的方法,利用变换角的方法求三角函数值的技巧,y=Asin(ωx+φ)型函数的图象和性质,注意有三角函数值求角的范围的方法
练习册系列答案
相关题目