题目内容
已知等差数列{an}满足:a2+a4=14,a6=13,{an}的前n项和为Sn.
(Ⅰ)求an及Sn;
(Ⅱ)令bn=
(n∈N+),数列{bn}的前n项和为Tn,求证:
≤Tn<
.
(Ⅰ)求an及Sn;
(Ⅱ)令bn=
| 1 |
| an2-1 |
| 1 |
| 8 |
| 1 |
| 4 |
分析:(I)设首项为a1,公差为d,根据a2+a4=14,a6=13,求出首项与公差,即可求an及Sn;
(Ⅱ)确定数列的通项,利用裂项法求出数列的和,即可证得结论.
(Ⅱ)确定数列的通项,利用裂项法求出数列的和,即可证得结论.
解答:(I)解:设首项为a1,公差为d,则
∵a2+a4=14,a6=13,∴
∴a1=3,d=2
∴an=3+2(n-1)=2n+1,Sn=3n+
×2=n2+2n;
(Ⅱ)证明:bn=
=
(
-
)
∴Tn=
(1-
+
-
+…+
-
)=
(1-
)<
∵Tn单调递增,∴Tn≥T1=
∴
≤Tn<
.
∵a2+a4=14,a6=13,∴
|
∴a1=3,d=2
∴an=3+2(n-1)=2n+1,Sn=3n+
| n(n-1) |
| 2 |
(Ⅱ)证明:bn=
| 1 |
| an2-1 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
∵Tn单调递增,∴Tn≥T1=
| 1 |
| 8 |
∴
| 1 |
| 8 |
| 1 |
| 4 |
点评:本题考查等差数列的通项与求和,考查裂项法的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目