题目内容
已知函数f(x)=
sin2x-2sin2x.
(Ⅰ)若点P(1,-
)在角α的终边上,求f(α)的值;
(Ⅱ)若x∈[-
,
],求f(x)的值域.
| 3 |
(Ⅰ)若点P(1,-
| 3 |
(Ⅱ)若x∈[-
| π |
| 6 |
| π |
| 3 |
(Ⅰ)因为点P(1,-
)在角α的终边上,所以sinα=-
,cosα=
,
所以f(α)=
sin2α-2sin2α=2
sinαcosα-2sin2α=2
×(-
)×
-2×(-
)2=-3.
(Ⅱ)f(x)=
sin2x-2sin2x=
sin2x+cos2x-1=2sin(2x+
)-1,
因为x∈[-
,
],所以-
≤2x+
≤
,所以-
≤sin(2x+
)≤1,
所以f(x)的值域是[-2,1].
| 3 |
| ||
| 2 |
| 1 |
| 2 |
所以f(α)=
| 3 |
| 3 |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
(Ⅱ)f(x)=
| 3 |
| 3 |
| π |
| 6 |
因为x∈[-
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
所以f(x)的值域是[-2,1].
练习册系列答案
相关题目