题目内容

在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求△ABC的面积的最大值.
(Ⅰ)由题意,∵(2a-c)cosB=bcosC,由正弦定理得:(2sinA-sinC)cosB=sinBcosC,
∴2sinA•cosB-sinC•cosB=sinBcosC,化为:2sinA•cosB=sinC•cosB+sinBcosC,
∴2sinA•cosB=sin(B+C).
∵在△ABC中,sin(B+C)=sinA,
∴2sinA•cosB=sinA,解得:cosB=
1
2
,故B=
π
3

(Ⅱ)若b=2,由余弦定理得:a2+c2-2ac•cos
π
3
=4,即a2+c2-ac=4
又a2+c2-ac≥2ac-ac=ac,即ac≤4(取=时,a=c=
3
),
故△ABC的面积S=
1
2
ac•sinB≤
1
2
×4×
3
2
=
3
,故△ABC的面积的最大值为
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网