题目内容
为了了解某次参加知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是 .
【答案】分析:从容量为N的总体中抽取容量为n的样本,系统抽样的前面两个步骤是:(1)将总体中的N个个体进行编号;(2)将整个编号按k分段,当
为整数时,k=
;当
不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N′能被n整除,本题中学生总数不能被容量整除,故应从总体中随机剔除个体,保证整除即可.
解答:解:学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.
∵1252=50×25+2,
故应从总体中随机剔除个体的数目是2,
故答案为:2.
点评:本题考查系统抽样,系统抽样的步骤,得到总数不能被容量整除时,应从总体中随机剔除个体,保证整除是解题的关键,属于基础题.
解答:解:学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.
∵1252=50×25+2,
故应从总体中随机剔除个体的数目是2,
故答案为:2.
点评:本题考查系统抽样,系统抽样的步骤,得到总数不能被容量整除时,应从总体中随机剔除个体,保证整除是解题的关键,属于基础题.
练习册系列答案
相关题目
| 分组 | 频数 | 频率 |
| 50.5~60.5 | 4 | 0.08 |
| 60.5~70.5 | 0.16 | |
| 70.5~80.5 | 10 | |
| 80.5~90.5 | 16 | 0.32 |
| 90.5~100.5 | ||
| 合计 | 50 |
(Ⅱ)补全频数直方图;
(Ⅲ)学校决定成绩在75.5~85.5分的学生为二等奖,问该校获得二等奖的学生约为多少人?