题目内容
.设a,b,m为整数(m﹥0),若a和b被m除得的余数相同,则称a和b对m同余记为a=b(modm),已知
则
的值可以是( )
| A.2010 | B.2011 | C.2012 | D.2009 |
B
根据已知中a和b对模m同余的定义,结合二项式定理,我们可以求出a的值,结合b=a(bmod10),比照四个答案中的数字,结合得到答案.
解:∵a=1+C201+C202?2+C203?22+…+C2020?219
=
(1+2)20+
=
×320+
,
∵320=(32)10=(10-1)10=1010-
×109+
×108-…-
×101+1,其个位是1,
∴320个位是1,
∴
×320+
个位是1,
∴a个位是1.
若b=a(bmod10),
则b的个位也是1
故选B.
解:∵a=1+C201+C202?2+C203?22+…+C2020?219
=
=
∵320=(32)10=(10-1)10=1010-
∴320个位是1,
∴
∴a个位是1.
若b=a(bmod10),
则b的个位也是1
故选B.
练习册系列答案
相关题目