题目内容
已知函数f(x)=(x-1)2,数列{an}是各项均不为0的等差数列,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足bn=(
)n-1.
(I)求an;
(II)若数列{cn}满足cn=
,证明:c1+c2+c3+…+cn<3.
| 3 |
| 4 |
(I)求an;
(II)若数列{cn}满足cn=
| an |
| 4n-1•bn |
(I)因为点(an+1,S2n-1)在函数f(x)的图象上,所以an2=S2n-1,
令n=1,2得
,即
解得
,
∴an=2n-1;
(II)由(I)得cn=
=
=
,
令Tn=c1+c2+c3+…+cn,
则Tn=
+
+
+…+
+
,①
∴
Tn=
+
+
+…+
+
,②
①-②得
Tn=
+
+
+…+
-
=1+
×
-
=2-
∴Tn=3-
<3.
令n=1,2得
|
|
|
∴an=2n-1;
(II)由(I)得cn=
| an |
| 4n-1•bn |
| 2n-1 | ||
4n-1•(
|
| 2n-1 |
| 3n-1 |
令Tn=c1+c2+c3+…+cn,
则Tn=
| 1 |
| 30 |
| 3 |
| 31 |
| 5 |
| 32 |
| 2n-3 |
| 3n-2 |
| 2n-1 |
| 3n-1 |
∴
| 1 |
| 3 |
| 1 |
| 31 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-3 |
| 3n-1 |
| 2n-1 |
| 3n |
①-②得
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 32 |
| 2 |
| 33 |
| 2 |
| 3n-1 |
| 2n-1 |
| 3n |
| 2 |
| 3 |
1-
| ||
1-
|
| 2n-1 |
| 3n |
| 2(n+1) |
| 3n |
∴Tn=3-
| n+1 |
| 3n-1 |
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|