题目内容

已知函数f(x)=ax3-bx2+x(a,b∈R且ab≠0)的图象如图,且|x1|>|x2|,则有(  )
精英家教网
A、a>0,b>0B、a<0,b<0C、a>0,b<0D、a<0,b>0
分析:由图知二个零点x1,x2.从而得导函数f′(x)=3ax2-2bx+1的图象是开口向下、与x轴交于点(x1,0)、(x2,0)的抛物线,又由图得a<0,从而可以判断a,b,c的符号.
解答:解:由图象可知:
x (-∞,x1 x1 (x1,x2 x2 (x2,+∞)
f(x) 极小值 极大值
f′(x) - 0 + 0 -
∴导函数f′(x)=3ax2-2bx+1的图象是开口向下、与x轴交于点(x1,0)、(x2,0)的抛物线
∴a<0,x1+x2=
2b
3a

由x1<0,x2>0,且|x1|>|x2|知:x1+x2=
2b
3a
<0
∴b>0
故选D.
点评:本题考查函数的零点,三次函数的图象,以及利用图象解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网