题目内容
二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,图象与x轴的两个交点中,一个交点的横坐标x1∈(2,3),则有
( )
( )
| A.abc>0 | B.a+b+c<0 | C.a+c>b | D.3b<2c |
∵二次函数f(x)=ax2+bx+c的图象开口向下,
∴a<0,又对称轴为x=1,
∴x=-
=1,
∴b=-2a;
∴f(x)=ax2-2ax+c.
又与x轴的两个交点中,一个交点的横坐标x1∈(2,3),a<0,
∴
即:
,
∴
,
∴a+c>-2a=b.C符合.
又a<0,b=-2a>0,c>0,
∴abc<0,排出A,
∵二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,
∴f(1)=a+b+c>0,排出B,f(-1)=f(3),
图象与x轴的两个交点中一个交点的横坐标x1∈(2,3),
∴f(-1)=f(3)<0,而f(-1)=a-b+c=-
b+c<0,
∴3b>2c,排出D.
故选C.
∴a<0,又对称轴为x=1,
∴x=-
| b |
| 2a |
∴b=-2a;
∴f(x)=ax2-2ax+c.
又与x轴的两个交点中,一个交点的横坐标x1∈(2,3),a<0,
∴
|
|
∴
|
∴a+c>-2a=b.C符合.
又a<0,b=-2a>0,c>0,
∴abc<0,排出A,
∵二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,
∴f(1)=a+b+c>0,排出B,f(-1)=f(3),
图象与x轴的两个交点中一个交点的横坐标x1∈(2,3),
∴f(-1)=f(3)<0,而f(-1)=a-b+c=-
| 3 |
| 2 |
∴3b>2c,排出D.
故选C.
练习册系列答案
相关题目