题目内容

当a>0时,设命题P:函数f(x)=x+
a
x
在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是(  )
A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2
∵函数f(x)=x+
a
x
在区间(1,2)上单调递增;
∴f′(x)≥0在区间(1,2)上恒成立,
∴1-
a
x2
≥0在区间(1,2)上恒成立,
即a≤x2在区间(1,2)上恒成立,
∴a≤1.且a>0…①
又不等式x2+ax+1>0对任意x∈R都成立,
∴△=a2-4<0,
∴-2<a<2…②
若“P且Q”是真命题,
则P且Q都是真命题,故由①②的交集得:0<a≤1,
则实数a的取值范围是0<a≤1.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网