题目内容
若函数f(x)=
|
分析:由题意,此分段函数是一个减函数,故一次函数系数为负,且在分段点处,函数值应是右侧小于等于左侧,由此得相关不等式,即可求解
解答:解:依题意,
,解得a≤
,
故答案为:(-∞,
].
|
| 13 |
| 8 |
故答案为:(-∞,
| 13 |
| 8 |
点评:本题考查函数单调性的性质,熟知一些基本函数的单调性是正确解对本题的关键,本题中有一易错点,忘记验证分段点出函数值的大小验证,做题时要注意考虑完全.
练习册系列答案
相关题目
若函数f(x)=
是R上的单调减函数,则实数a的取值范围是( )
|
| A、(-∞,2) | ||
B、(-∞,
| ||
| C、(0,2) | ||
D、[
|
对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“和谐区间”.若函数f(x)=
-
(a>0)有“和谐区间”,则函数g(x)=
x3+
ax2+(a-1)x+5的极值点x1,x2满足( )
| a+1 |
| a |
| 1 |
| x |
| 1 |
| 3 |
| 1 |
| 2 |
| A、x1∈(0,1),x2∈(1,+∞) |
| B、x1∈(-∞,0),x2∈(0,1) |
| C、x1∈(-∞,0),x2∈(-∞,0) |
| D、x1∈(1,+∞),x2∈(1,+∞) |
若函数f(x)=
是一个单调递增函数,则实数a的取值范围( )
|
| A、(1,2]∪[3,+∞) |
| B、(1,2] |
| C、(0,2]∪[3,+∞) |
| D、[3,+∞) |