题目内容
已知数列{an}:
,
+
,
+
+
,
+
+
+
,…,那么数列bn=
前n项和为
.
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| anan+1 |
| 4n |
| n+1 |
| 4n |
| n+1 |
分析:依题意可知an=
,利用裂项法可求得bn=4(
-
),求和即可.
| n |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:依题意得:an=
+
+…+
=
=
,
∴
=
,
∴bn=
=
•
=4(
-
),
∴b1+b2+…+bn=4(1-
+
-
+…+
-
)
=4(1-
)
=
.
故答案为:
| 1 |
| n+1 |
| 2 |
| n+1 |
| n |
| n+1 |
=
| ||
| n+1 |
| n |
| 2 |
∴
| 1 |
| an |
| 2 |
| n |
∴bn=
| 1 |
| anan+1 |
| 2 |
| n |
| 2 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
∴b1+b2+…+bn=4(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=4(1-
| 1 |
| n+1 |
=
| 4n |
| n+1 |
故答案为:
| 4n |
| n+1 |
点评:本题考查数列的求和,着重考查等差数列的求和与裂项法求和,考查分析转化与运算能力,属于中档题.
练习册系列答案
相关题目