题目内容

平面直角坐标系中,O为坐标原点,已知两点A(3,1)、B(-1,3),若点C满足
OC
OA
OB
,其中α、β∈R,且α+β=1,则点C的轨迹方程为(  )
A.3x+2y-11=0B.(x-1)2+(y-2)2=5
C.2x-y=0D.x+2y-5=0
C点满足
OC
OA
OB
且α+β=1,
∴A、B、C三点共线.
∴C点的轨迹是直线AB
又A(3,1)、B(-1,3),
∴直线AB的方程为:
y-1
3-1
=
x-3
-1-3
整理得x+2y-5=0
故C点的轨迹方程为x+2y-5=0
故应选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网